Nansen Legacy tools for data management

Luke Marsden (lukem@unis.no)
Pål Ellingsen, Øystein Godøy, Tove Gabrielsen
Things we will cover

• Introduce the project

• How are data logged?

• Where are the data?

• Introduce tools that can be used by broader research community
Nansen Legacy Project

• 210 researchers, 10 Norwegian research institutions

• Multidisciplinary

• Northern Barents Sea, multiple cruises

• FAIR data management principles (Wilkinson et al., 2016)
 • Findable, Accessible, Interoperable, Reusable
Overview of how data are logged in the project

• Template generator to log samples/events
 • https://www.sios-svalbard.org/cgi-bin/darwinsheet/?setup=aen

• Samples labelled physically, logged electronically. Data without physical sample also logged.

• Samples/events searchable on SIOS.
 • https://sios-svalbard.org/reports/aen_multi

• Sampling protocols documented and published (link above).
UUIDs

• Universally unique ID

• Used for every sample/event

• 32 digit hex number, can be represented as data matrix for simplicity:

 f69d4072-49be-11eb-b378-0242ac130002

• Chance of collision: 10^{-14}
UUIDs

• Universally unique ID

• Used for every sample/event

• 32 digit hex number, can be represented as data matrix for simplicity:

 f69d4072-49be-11eb-b378-0242ac130002

• Chance of collision: 10^{-14}
Hierarchy

Gears/Activities
CTD, Box core, Drone, Dive…
Niskin bottles, L-ADCPs…

Samples
UUID #5
UUID #6

Subsamples
UUID #11
UUID #12

Introduce the project → How are data logged? → Where are the data? → Introduce tools
Hierarchy: Example 1

Introduce the project → How are data logged? → Where are the data? → Introduce tools
Hierarchy: Example 2

Gears/Activities

Dive missions

100 ml water

Photo #1

Photo #2

Drone flight

Introduce the project → How are data logged? → Where are the data? → Introduce tools
Stations

• 25 transect stations, including 7 process stations

• Around 500 stations visited in all
 • Transects, moorings, one off deployments…
Introduce the project → How are data logged? → Where are the data? → Introduce tools

Metadata

- Searchable online
- Rich metadata
- Contact persons
- Linked to physical samples
Metadata

- Searchable online
- Rich metadata
- Contact persons
- Linked to physical samples
Introduce the project → How are data logged? → Where are the data? → Introduce tools

Metadata

• Searchable online

• Rich metadata

• Contact persons

• Linked to physical samples

Search for all CTD Chlorophyll A data from 2018
<table>
<thead>
<tr>
<th>Event Date</th>
<th>Station Name</th>
<th>Gear Type</th>
<th>Sample Type</th>
<th>Event ID</th>
<th>Parent Event ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-08-20</td>
<td>SICE3</td>
<td>CTD w/bottles</td>
<td>Chlorophyll a tot</td>
<td>1a5fa299-9e0d-11e8-aecb-8c164557e456</td>
<td>dfdd710a-9c88-11e8-91c9-005055a2b019</td>
</tr>
<tr>
<td>2018-08-20</td>
<td>SICE3</td>
<td>CTD w/bottles</td>
<td>Chlorophyll a tot</td>
<td>1a5fa29b-9e0d-11e8-aecb-8c164557e456</td>
<td>dfdd7104-9c88-11e8-91c9-005055a2b019</td>
</tr>
<tr>
<td>2018-08-20</td>
<td>SICE3</td>
<td>CTD w/bottles</td>
<td>Chlorophyll a tot</td>
<td>1a5fa29a-9e0d-11e8-aecb-8c164557e456</td>
<td>dfdd710c-9c88-11e8-91c9-005055a2b019</td>
</tr>
<tr>
<td>2018-08-20</td>
<td>SICE3</td>
<td>CTD w/bottles</td>
<td>Chlorophyll a tot</td>
<td>1a5fa29c-9e0d-11e8-aecb-8c164557e456</td>
<td>dfdd710e-9c88-11e8-91c9-005055a2b019</td>
</tr>
<tr>
<td>2018-08-20</td>
<td>SICE3</td>
<td>CTD w/bottles</td>
<td>Chlorophyll a tot</td>
<td>1a5fa298-9e0d-11e8-aecb-8c164557e456</td>
<td>dfdd7112-9c88-11e8-91c9-005055a2b019</td>
</tr>
<tr>
<td>2018-08-20</td>
<td>SICE3</td>
<td>CTD w/bottles</td>
<td>Chlorophyll a tot</td>
<td>1a5fa29f-9e0d-11e8-aecb-8c164557e456</td>
<td>dfdd7105-9c88-11e8-91c9-005055a2b019</td>
</tr>
<tr>
<td>2018-08-20</td>
<td>SICE3</td>
<td>CTD w/bottles</td>
<td>Chlorophyll a tot</td>
<td>1a5fa29e-9e0d-11e8-aecb-8c164557e456</td>
<td>dfdd7100-9c88-11e8-91c9-005055a2b019</td>
</tr>
</tbody>
</table>
Introduce the project → How are data logged? → Where are the data? → Introduce tools

Metadata

- Searchable online
- Rich metadata
- Contact persons
- Linked to physical samples
Metadata: Other ways to search

- Sample Search
 - Sample ID Search
 - Multiple ID Search
 - Station Search
 - Station Overview
 - Full sample log as CSV (without metadata)
 - Excel Template Generator

- Nansen Legacy Documents
 - Sampling Protocol (v1)
 - Sampling Protocol (v2)
 - Sampling Protocol (v3)
 - Sampling Protocol (v4.2)
 - Sampling Protocol (v5)
 - Sampling Protocol (v6)
Published data

• All data accessible via SIOS

• Single access point

• Links to data repositories
Published data

For tutorials on how to find data and how to use the results page, click here: https://sios-svalbard.org/tutorials
Published data
Published data

Interact directly with selected products from the map by clicking on the highlighted features. Select products from the table below to
<table>
<thead>
<tr>
<th>Dataset name</th>
<th>Institutions</th>
<th>Abstract</th>
<th>Collection period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll A and phaeopigments Nansen Legacy cruise 2019, station P2</td>
<td>University Centre in Svalbard</td>
<td>This dataset is a collection of the acid-corrected chlorophyll A and phaeopigments measurements taken as part of the Nansen Legacy project. The data is from a single depth profile from station P1 taken on 2019-12-12 at 31.219021941666666 and 75.9996045666667%. Samples were collected from different depths of the water column.</td>
<td>2019-12-12T06:00:00Z to 2019-12-12T06:00:00Z</td>
</tr>
<tr>
<td>Chlorophyll A and phaeopigments Nansen Legacy cruise 2019, station P1</td>
<td>University Centre in Svalbard</td>
<td>This dataset is a collection of the acid-corrected chlorophyll A and phaeopigments measurements taken as part of the Nansen Legacy project. The data is from a single depth profile from station P2 taken on 2019-12-10 at 34.06550771666667% and 77.4996566666667%. Samples were collected from different depths of the water column.</td>
<td>2019-12-10T06:00:00Z to 2019-12-10T06:00:00Z</td>
</tr>
<tr>
<td>Chlorophyll A and phaeopigments Nansen Legacy cruise 2019, station P3</td>
<td>University Centre in Svalbard</td>
<td>This dataset is a collection of the acid-corrected chlorophyll A and phaeopigments measurements taken as part of the Nansen Legacy project. The data is from a single depth profile from station P3 taken on 2019-12-09 at 33.99431746666667% and 78.4996358333333%. Samples were collected from different depths of the water column.</td>
<td>2019-12-09T06:00:00Z to 2019-12-09T06:00:00Z</td>
</tr>
<tr>
<td>Chlorophyll A and phaeopigments Nansen Legacy cruise 2019, station P4</td>
<td>University Centre in Svalbard</td>
<td>This dataset is a collection of the acid-corrected chlorophyll A and phaeopigments measurements taken as part of the Nansen Legacy project. The data is from a single depth profile from station P4 taken on 2019-12-06 at 34.094391799999999% and 78.7326178333333%. Samples were collected from different depths of the water column.</td>
<td>2019-12-06T06:00:00Z to 2019-12-06T06:00:00Z</td>
</tr>
</tbody>
</table>
Published data

Seamless access to Norwegian marine data

Abstract
This dataset is a collection of the acid-corrected chlorophyll A and phaeopigments measurements taken as part of the Nansen Legacy project (www.arvenettetmansen.com). The data is from a single depth profile from station P1 taken on 2019-12-12 at 31.21902/16.69000000E and 75.99980/66.66677N. Samples were collected from different depths of the water column.

Scientific keywords:
- EARTH SCIENCE
- OCEANS
- OCEAN CHEMISTRY
- CHLOROPHYLL

Key words:
- Chlorophyll

Learn more about this dataset and how to download it from the NMDC website.
Sampling protocols

- Introduce the project → How are data logged? → Where are the data? → Introduce tools

Nansen Legacy Tools
- Sample Search
- Sample ID Search
- Multiple ID Search
- Station Search
- Station Overview
- Full sample log as CSV (without metadata)
- Excel Template Generator

Nansen Legacy Documents
- Sampling Protocol (v1)
- Sampling Protocol (v2)
- Sampling Protocol (v3)
- Sampling Protocol (v4.2)
- Sampling Protocol (v5)
- Sampling Protocol (v6)
Sampling protocols

• Methodological agreement between the involved researchers

• Continuity and comparable data throughout the 5 years sampling period

• An easily accessible overview over parameters sampled

• Easier cruise planning
Template generator

• Developed following discussions with Dag Endresen of GBIF Norway
 • Global Biodiversity Information Facility

• Heavily developed by Pål Ellingsen (my predecessor).

• Based on Darwin Core, some terms from NetCDF-CF, some other terms.

• Generate standardised templates with common vocabulary.

• Continuously developed and added to.
Darwin Core & NetCDF-CF

• Darwin Core:
 • Focuses mainly on primary biodiversity data (e.g. occurrences of a species)
 • Also ecological data (descriptors, traits, etc)
 • The main part of a Darwin Core Archive is a table (csv, excel) that has column names taken from a common vocabulary.

• NetCDF-CF:
 • Initially developed by atmospheric modellers
 • Developed further to include oceanography, also other disciplines (physical data).
 • Standard names searchable online, with descriptions and units.
Darwin Core Archive

- Can be created by template generator
- **Core file**
 - Columns of data
 - One row per record
- **Extension files**
- **Information on records**
- **meta.xml**
 - Describes structure
- **EML.xml**
 - Describes dataset as whole (e.g. abstract, people involved, methods, citations...)
- Many-to-one relationships
Template generator

Introduce the project → How are data logged? → Where are the data? → Introduce tools
Template generator

- Sample Search
- Sample ID Search
- Multiple ID Search
- Station Search
- Station Overview
- Full sample log as CSV (without metadata)

- Sampling Protocol (v1)
- Sampling Protocol (v2)
- Sampling Protocol (v3)
- Sampling Protocol (v4.2)
- Sampling Protocol (v5)
- Sampling Protocol (v6)

- Excel Template Generator
Template generator: Nansen Legacy setup
Template generator: Darwin Core setup

Introduce the project → How are data logged? → Where are the data? → Introduce tools

Excel Template Generator

Check the boxes next to the terms you want to include in your template and click the Create template button.

Darwin Core terms: A quick reference guide

Each box different DwC class
Template generator: Darwin Core setup

<table>
<thead>
<tr>
<th>EVENT</th>
<th>LOCATION</th>
<th>IDENTIFICATION</th>
<th>ORGANISM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>Continent</td>
<td>Date Identified</td>
<td>Associated Occurrences</td>
</tr>
<tr>
<td>End Day Of Year</td>
<td>Coordinate Precision</td>
<td>Identification ID</td>
<td>Associated Organisms</td>
</tr>
<tr>
<td>Event Date</td>
<td>Coordinate Uncertainty In Meters</td>
<td>Identification Qualifier</td>
<td></td>
</tr>
<tr>
<td>Event ID</td>
<td>Country</td>
<td>Identification References</td>
<td></td>
</tr>
<tr>
<td>Event Remarks</td>
<td>Country Code</td>
<td>Identification Remarks</td>
<td></td>
</tr>
<tr>
<td>Event Time</td>
<td>County</td>
<td>Identification Verification Status</td>
<td></td>
</tr>
<tr>
<td>Field Notes</td>
<td>Decimal Latitude</td>
<td>Identified By</td>
<td></td>
</tr>
<tr>
<td>Field Number</td>
<td>Decimal Longitude</td>
<td>Type Status</td>
<td></td>
</tr>
<tr>
<td>Habitat</td>
<td>Footprint Spatial Fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month</td>
<td>Footprint SRS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent Event ID</td>
<td>Footprint WKT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling Size Unit</td>
<td>Geodelic Datum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling Size Value</td>
<td>Georeferenced By</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling Effort</td>
<td>Georeferenced Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling Protocol</td>
<td>Georeference Protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Day Of Year</td>
<td>Georeference Remarks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbatim EventDate</td>
<td>Georeference Sources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Georeference Verification Status</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Higher Geography ID [higherGeographyID]

Higher Geography ID refers to the geographic region within which the location occurred. The recommended best practice is to use a persistent identifier from a controlled vocabulary such as the Getty Thesaurus of Geographic Names.

Example: "TGN: 1002002" for Prov. Tierra del Fuego, Argentina

No validation

Template generator: Darwin Core setup

Introduce the project → How are data logged? → Where are the data? → Introduce tools
Template generator: Darwin Core setup

Introduce the project → How are data logged? → Where are the data? → Introduce tools
Template generator: Darwin Core setup

Introduce the project → How are data logged? → Where are the data? → Introduce tools

Language of template. Not of this page

Dataset ID [datasetID]

No validation

Darwin core info (validation takes precedence for formatting):

An identifier for the set of data. May be a global unique identifier or an identifier specific to a collection or institution.
Template generator: Darwin Core setup

Introduce the project → How are data logged? → Where are the data? → Introduce tools

Column header, and corresponding Darwin Core term

Format requirements

Description of field
Introduce the project → How are data logged? → Where are the data? → Introduce tools

Template generator: Darwin Core setup

Excel Template Generator

Check the boxes next to the terms you want to include in your template and click the Create template button.

Darwin Core Terms: A quick reference

Disposition [disposition]

No validation

Darwin core info (validation takes precedence for formatting):

The current state of a specimen with respect to the collection identified in collectionCode or collectionID. Recommended best practice is to use a controlled vocabulary.

Examples: "in collection", "missing", "voucher elsewhere", "duplicates elsewhere"
Introduce the project → How are data logged? → Where are the data? → Introduce tools

Template generator: Darwin Core setup

<table>
<thead>
<tr>
<th>Basis of Record</th>
<th>Occurrence ID</th>
<th>Individual Count</th>
<th>Organism Quantity</th>
<th>Organism Quantity Type</th>
<th>Date</th>
<th>Country Code</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>basisOfRecord</td>
<td>occurrenceID</td>
<td>individualCount</td>
<td>organismQuantity</td>
<td>organismQuantityType</td>
<td>eventDate</td>
<td>countryCode</td>
<td>decim</td>
</tr>
</tbody>
</table>

When pasting only use 'paste special' / 'paste only', selecting numbers and/or text

Darwin core term; row usually hidden for protection

One row per event/occurrence

Note on how to fill in selected cell
How do I create a Darwin Core Archive from this?

Introduce the project → How are data logged? → Where are the data? → Introduce tools

SDMS WG Training #4: How to create Darwin Core Archives for biological data

Matteo De Stefano

GBIF Integrated Publishing Toolkit

https://www.gbif.org/en/ipt
Excel Template Generator

Check the boxes next to the terms you want to include in your template and click the Create template button.

Darwin Core Terms: A quick reference guide

Create template

No validation

Darwin core info (validation takes precedence for formatting):

The age class or life stage of the biological individual(s) at the time the Occurrence was recorded. Recommended best practice is to use a controlled vocabulary.

Examples: "egg", "eft", "juvenile", "adult", "2 adults 4 juveniles"
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis of Record</td>
<td>Occurrence ID</td>
<td>Individual Count</td>
<td>Date</td>
<td>Country Code</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Geodetic Datum</td>
<td>Coordinate Uncertainty In Meters</td>
<td>Scientific Name</td>
<td>Kingdom</td>
<td></td>
</tr>
</tbody>
</table>

When pasting only 'paste special' / 'paste only', selecting numbers and/or text.
<table>
<thead>
<tr>
<th>Basis of Record</th>
<th>Occurrence ID</th>
<th>Individual Count</th>
<th>Date</th>
<th>Country Code</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Geodetic Datum</th>
<th>Coordinate Uncertainty In Meters</th>
<th>Scientific Name</th>
<th>Kingdom</th>
</tr>
</thead>
<tbody>
<tr>
<td>HumanObservation ab10f59-5308-45bd-aeeb-9d77e808e014</td>
<td>1</td>
<td>2021-04-15</td>
<td>SIM</td>
<td>78.2232</td>
<td>15.6267</td>
<td>WGS84</td>
<td>10 Rangifer tarandus platyrhynchus Animalia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HumanObservation 1fd5188-6d99-46ed-8d5b-08070dc4f2f</td>
<td>2</td>
<td>2021-04-16</td>
<td>SIM</td>
<td>78.2232</td>
<td>15.6267</td>
<td>WGS84</td>
<td>10 Rangifer tarandus platyrhynchus Animalia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HumanObservation c515b4a-9c6d-4856-45f6-445c-b4493c603e36</td>
<td>3</td>
<td>2021-04-17</td>
<td>SIM</td>
<td>78.2232</td>
<td>15.6267</td>
<td>WGS84</td>
<td>10 Rangifer tarandus platyrhynchus Animalia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HumanObservation 601c1d1-829e-4c08-8a12-653c177178</td>
<td>1</td>
<td>2021-04-18</td>
<td>SIM</td>
<td>78.2232</td>
<td>15.6267</td>
<td>WGS84</td>
<td>10 Rangifer tarandus platyrhynchus Animalia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>---------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>basisOfRecord</td>
<td>occurrenceId</td>
<td>IndividualCount</td>
<td>eventDate</td>
<td>countryCode</td>
<td>decimalLatitude</td>
<td>decimalLongitude</td>
<td>geoDatum</td>
<td>coordinateUncertaintyInMeters</td>
<td>scientificName</td>
<td>kingdom</td>
</tr>
<tr>
<td>HumanObservation</td>
<td>abD4f52-5308-453d-eeeb-9677e08e0014</td>
<td>1</td>
<td>2021-04-15</td>
<td>SK</td>
<td>78.2232</td>
<td>15.6267</td>
<td>WGS84</td>
<td></td>
<td>Rangifer tarandus platyrhynchus Animalia</td>
<td></td>
</tr>
<tr>
<td>HumanObservation</td>
<td>14d5188-ed59-4967-bd5b-06070db42f</td>
<td>2</td>
<td>2021-04-16</td>
<td>SK</td>
<td>78.2232</td>
<td>15.6267</td>
<td>WGS84</td>
<td></td>
<td>Rangifer tarandus platyrhynchus Animalia</td>
<td></td>
</tr>
<tr>
<td>HumanObservation</td>
<td>c651b4a-9cf4-485d-b45c-b449c6b0836</td>
<td>3</td>
<td>2021-04-17</td>
<td>SK</td>
<td>78.2232</td>
<td>15.6267</td>
<td>WGS84</td>
<td></td>
<td>Rangifer tarandus platyrhynchus Animalia</td>
<td></td>
</tr>
<tr>
<td>HumanObservation</td>
<td>60dc1cd-189f-e4c0-8a12-b53ccf17717c8</td>
<td>4</td>
<td>2021-04-18</td>
<td>SK</td>
<td>78.2232</td>
<td>15.6267</td>
<td>WGS84</td>
<td></td>
<td>Rangifer tarandus platyrhynchus Animalia</td>
<td></td>
</tr>
</tbody>
</table>

Occurrence ID
Dawson core sup to info: An identifier for the Occurrence (as opposed to a particular digital record of the occurrence). In the absence of a persistent global unique identifier, construct one from a combination of identifiers in the record that will mos...
Introduce the project → How are data logged? → Where are the data? → Introduce tools

Save as CSV

File name: occurrences
Save as type: CSV (Comma delimited)
Create New Resource

You can create a new blank resource, upload an existing resource saved as a zipped Darwin Core archive, or upload an existing IPT resource using its zipped resource configuration folder. Please refer to the User Manual for more specific instructions. A short name is required.

Shortname

1. luketest

Type

1. Occurrence

Import from an archived resource

Create
Choose the file you have created using the template generator
Introduce the project → How are data logged? → Where are the data? → Introduce tools

Input file name

Created source file

Analysed file (next slide)

Formatting

Readable
Columns 11
File /srv/ipt/resources/luketest/sources/occurrences.txt
Size 838 bytes
Rows 14
Modified 2021-04-19 12:54:14
Source log Download

Analyze

Number of Header Rows
1
Field Quotes "
Character Encoding UTF-8

Field Delimiter ,
Multi-value Delimiter
Date Format YYYY-MM-DD
Introduce the project → How are data logged? → Where are the data? → Introduce tools

<table>
<thead>
<tr>
<th>basisOfRecord</th>
<th>occurrenceID</th>
<th>individualCount</th>
<th>eventDate</th>
<th>countryCode</th>
<th>decimalLatitude</th>
<th>decimalLongitude</th>
<th>geodeticDatum</th>
<th>coordinateUncertaintyInMeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>HumanObservation</td>
<td>abf04f59-5308-45bd-aeeb-9d77eb08e014</td>
<td>1</td>
<td>2021-04-15</td>
<td>SJM</td>
<td>78.2232</td>
<td>15.6267</td>
<td>WGS84</td>
<td>10</td>
</tr>
<tr>
<td>HumanObservation</td>
<td>14fd5188-ed59-4967-bdb5-0f070dcb4f2f</td>
<td>2</td>
<td>2021-04-16</td>
<td>SJM</td>
<td>78.2232</td>
<td>15.6267</td>
<td>WGS84</td>
<td>10</td>
</tr>
<tr>
<td>HumanObservation</td>
<td>c615ba4a-9cfd-485d-b45c-b4439c6c0836</td>
<td>4</td>
<td>2021-04-17</td>
<td>SJM</td>
<td>78.2232</td>
<td>15.6267</td>
<td>WGS84</td>
<td>10</td>
</tr>
<tr>
<td>HumanObservation</td>
<td>60dc1cd1-89fe-4c08-8a12-b53cf17717c8</td>
<td>1</td>
<td>2021-04-18</td>
<td>SJM</td>
<td>78.2232</td>
<td>15.6267</td>
<td>WGS84</td>
<td>10</td>
</tr>
</tbody>
</table>

Rows: 14
Modified: 2021-04-19 12:54:14
Introduce the project → How are data logged? → Where are the data? → Introduce tools

Overview: *luketest*

This is the overview page for the *luketest* resource.

Source Data

- Choose file: No file chosen
- Connect to database
- Clear

Your source data files and SQL sources for generating a Darwin Core Archive.

- Last modified: Apr 19, 2021

Darwin Core Mappings

- Darwin Core Occurrence
- Add

Your mapping between the source data and Darwin Core terms.

- Created source file: occurrences [file] 838 bytes, 14 rows, 11 columns. Apr 19, 2021

Mappings

Remember 11 columns

Metadata

- Edit

Your resource metadata.

Published Versions

- Publish

A preview of your pending published version compared with the current version if existing.

- Version
 - 1.0
 - Preview
Darwin Core Occurrence

The category of information pertaining to evidence of an occurrence in nature, in a collection, or in a dataset (specimen, observation, etc.). Replaces version issued 2020-04-15 with a new, limited vocabulary for occurrenceStatus.

Link: http://rs.tdwg.org/dwc/terms/index.htm#Occurrence

Source data

Before you can start mapping concepts, please select a source data file.

Source data

occurrences

Save Cancel
Introduce the project → How are data logged? → Where are the data? → Introduce tools
Introduce the project → How are data logged? → Where are the data? → Introduce tools

<table>
<thead>
<tr>
<th>Field Interval</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dcterms:accessRights</td>
<td></td>
</tr>
<tr>
<td>dcterms:bibliographicCitation</td>
<td></td>
</tr>
<tr>
<td>dcterms:references</td>
<td></td>
</tr>
<tr>
<td>institutionID</td>
<td></td>
</tr>
<tr>
<td>collectionID</td>
<td></td>
</tr>
<tr>
<td>datasetID</td>
<td></td>
</tr>
<tr>
<td>Use resource DOI</td>
<td></td>
</tr>
<tr>
<td>institutionCode</td>
<td></td>
</tr>
<tr>
<td>collectionCode</td>
<td></td>
</tr>
<tr>
<td>datasetName</td>
<td></td>
</tr>
<tr>
<td>ownerInstitutionCode</td>
<td></td>
</tr>
<tr>
<td>basisOfRecord</td>
<td>basisOfRecord</td>
</tr>
<tr>
<td>Source Sample: HumanObservation</td>
<td>HumanObservation</td>
</tr>
<tr>
<td>Translation: Add</td>
<td></td>
</tr>
</tbody>
</table>
Introduce the project → How are data logged? → Where are the data? → Introduce tools
Introduce the project → How are data logged? → Where are the data? → Introduce tools

Source Data

- Choose file: No file chosen
- Connect to database
- Clear

Your source data files and SQL sources for generating a Darwin Core Archive.

Last modified Apr 19, 2021

occurrences [file]

838 bytes, 14 rows, 11 columns. Apr 19, 2021

Darwin Core Mappings

- Darwin Core Occurrence
- Add

Your mapping between the source data and Darwin Core terms.

Last modified Apr 19, 2021

Core

Darwin Core Occurrence

11 terms mapped to occurrences. Apr 19, 2021

Metadata

Edit

Your resource metadata.

Last modified Apr 19, 2021

Published Versions

Publish

A preview of your pending published version compared with the current version if existing.

Version

1.0

Pending version

1.0

Visibility

Private

Data Licence

CC-BY 4.0

Published on

-
Darwin Core Archive

- **Core file**: Columns of data, one row per record
- **Information on records**: Can be created by template generator
- **Extension files**: Many-to-one relationships
- **meta.xml**: Describes structure
- **EML.xml**: Describes dataset as whole (e.g. abstract, people involved, methods, citations...)

Archive

- Created by IPT

Introduce the project → How are data logged? → Where are the data? → Introduce tools
NetCDF

• Use AeN setup to create template that includes physical terms

• Tools like Rosetta for converting from CSV to NetCDF.
NetCDF

• Use AeN setup to create template that includes physical terms

• Tools like Rosetta for converting from CSV to NetCDF.
GitHub: Want a similar setup for your project?
That’s all folks!

Exercise?:
- Explore the template
- Looking through metadata catalogue
- Q & A

https://sios-svalbard.org/reports/aen_multi

Image courtesy of Andreas Wolden