Near Real-Time Observations of Snow Water Equivalent for SIOS on Svalbard - SWESOS

Katharina Jentzsch, Niko Bornemann, William Cable, Jean-Charles Gallet, Stephan Lange, Sebastian Westermann and Julia Boike

This work is licensed under a Creative Commons BY-NC 4.0 International License
Project Aims

- Assess accuracy, spatial representativeness, applicability of **new automated monitoring technique** for measuring snow water equivalent (SWE) using a passive gamma ray sensor.
- Provide recommendations on potential to install more of these instruments in similarly remote environments in the future.
- Provide **unique, high quality, continuous, near-real time snow dataset** by linking existing snow datasets with new SWE measurements.
- It links soil (permafrost), snow, atmospheric and biological research fields and will be essential to develop snow, permafrost and hydrologic models in this data scarce region.
New and existing snow measurements at the Bayelva site

Table 1 Existing snow datasets at Bayelva

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snow depth</td>
<td>CS SR50 ultrasound, Jenoptik SHM30 laser distance</td>
</tr>
<tr>
<td>Snow temperature</td>
<td>2xPT100</td>
</tr>
<tr>
<td>Snow dielectric number</td>
<td>TDR100, vertically installed</td>
</tr>
<tr>
<td>Snow distribution</td>
<td>Time lapse cameras (m² scale), Time lapse camera overlooking entire Bayelva catchment (km² scale)</td>
</tr>
</tbody>
</table>

Table 2 New automated snow sensors installed 29.08.2019

| SWE | CS725 |
| Snow depth | CS SR50/AT ultrasound |
Automated and manual SWE and snow depth measurements
Validation of snow depth measurements, using...

...wind speed

...air and snow temperature

...surface albedo
Snow density as calculated from automated and manual SWE and snow depth measurements
Summary & Conclusions

• Independent manual snow pit measurements, wind, temperature and radiation data from the nearby climate station verify general course and strong changes of snow depth and SWE as well as onset and end of the snow-covered season as indicated by the new automated sensors.

→ New automated measurement system reliably captures the overall evolution of SWE and snow depth over the snow-covered season

• Difficulty: high spatial variation of SWE and snow depth within footprint area of the automated sensor due to uneven snow cover (uneven terrain, wind drift, discontinuous snow cover due to patchy snow melt)

→ Automated measurements expected to best represent snow conditions inside their footprint area at sites with an even snow cover (flat surface, no large obstacles, low wind speeds)
Further information

Short project report
• https://sios-svalbard.org/SWESOS_2020

Detailed project report
• https://zenodo.org/record/4146835#.YBp0wXkxmM8

Snow dataset
• Automated data
 • https://doi.pangaea.de/10.1594/PANGAEA.925357
• Manual data
 • https://doi.pangaea.de/10.1594/PANGAEA.925350

Acknowledgements
We thank the AWIPEV station for their continuous support in maintaining the Bayelva site and measuring snow characteristics. This work was supported by the Research Council of Norway, project number 291644, Svalbard Integrated Arctic Earth Observing System – Knowledge Centre, operational phase.