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Carbon cycle in perspective of glacier recession - marine or
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Strong relationship between atmospheric and seawater CO,

——Atmospheric CO;, (ppmv)
—+Seawater pCO; (patm)
—-—-Seawater pH

* Increase of atmospheric CO, causes increase of CO, in seawater and consenquent drop in pH
* The inverse processes can be also observed — lower CO, concentration in seawater causes

decrease in atmospheric CO, ,

http://www.fondriest.com/environmental-measurements/parameters/water-quality /ph/
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Iron fertilisation causes lower atmospheric CO, during LGM
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* After LGM, inhibition of ocean fertilization via lower Fe-rich dust deposition caused an
increase in CO, by 15 ppm, corresponding to 10% of atmospheric CO,

(Ciais et al., 2013)
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What are processes controlling carbon cycle during glacier recession —
tidewater and land-based glacier?

LAND-TERMINATING GLACIER OUTLET

MARINE-TERMINATING GLACIER OUTLET
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FEarlier approach in carbon cycle associated with glaciers

COOCR A

Glaciers and Nutrients in Arctic Seas

Abstract. Significantly higher concentrations of nitrate and silicate were found
in glaciated South Cape Fiord than in unglaciated Grise Fiord, in the Canadian
Arctic, or in adjacent Jones Sound. Ne significant differences in phosphate
concentrations were found. Glacial activity apparently enriches the concentrations
of those nutrients most critically limiting for arctic phytoplankton requirements.

Les karsts des régions polaires

The effects of active, moving glaciers
discharging into the sea on the nutrient
content of adjacent waters have been
the subject of some limited speculation,
Vibe (1), for example, discussing con-
ditions in northwest Greenland, re-
marked * . . . I hold the view that
the glaciers far surpass precipitation as
an erosive factor in procuring the in-
organic material . . . which renders
all organic life possible.” Similarly,
Sverdrup *. . . suggested that Antarctic
waters should also receive much dis-
persed silica formed by comminution
of rock beneath the very large glaciers
of the Antarctic continent™ (2). Hart-
ley and Dunbar (3) discussed upwell-
ing and enriching hydrodynamic proc-
esses associated with “brown zones"
adjacent to glaciers terminating in the
sea.

The hypothesis that active coastal
glaciers enrich nutrient concentrations
in the sea was tested in May 1969 in
two of the numerous fiords that indent
the southern shore (latitude 76°30'N)
of Ellesmere Island, Northwest Terri-
tories, Canada. Glaciated and unglaci-
ated fiords provide experimental and
control areas, respectively, in which
hypothetical effects of glaciation may

be isolated and examined without undue
external dilution, which might obscure
glacial influence. Grise Fiord, the con-
trol area, extends inland approximately
38 km and does not have any glaciers
reaching its shores. South Cape Fiord,
the experimental area, is approximately
25 km long and has three glaciers
reaching its shores (see cover photo-
graph). The largest of these, unnamed,
is approximately 32 km long and about
3.2 km wide where it reaches the fiord.
This glacier evidently is active, calving
small icebergs into South Cape Fiord.
The cover photograph shows one such
berg recently calved from the glacier
front. In May 1969, at least 15 ice-
bergs were frozen into the fiord.

At the time of this survey, air tem-
peratures were in the range of —15°
to —1°C and the entire area was snow-
covered with no signs of spring thaw
or melt. There were no effects on the
sea of runoff from the land. Throughout
the area of this study, Jones Sound and
the adjacent waters were completely
covered with intact, snow-covered sea
ice averaging 0.75 to 1.0 m in thick-
ness,

Grise Fiord has a maximum depth
of about 365 m inside a sill depth of

491

(Apollonio, 1973)
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Harlier approach in CO, comsumption — silicate weathering

* During glacial/interglacial transition,
C A enhanced chemical weathering of silicates
" . . . .
o} .. caused high CO, consumption in tectonically
I . active mountain ranges (e.g. Himalayas)
- - ]
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(Sharp et al. 1995)
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Historical perspective: CO, comsumption via silicate weathering

* During glacial/interglacial transition,

C A enhanced chemical weathering of silicates

o} . caused high CO, consumption in tectonically
. active mountain ranges (e.g. Himalayas)

. Vam * Net consumption of CO,
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Increase of ocean primary production in vicinity of glaciers
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* In sector of sea under an influence of glacier meltwater, primary production increases leading to

consumption of atmospheric CO, but factors controlling this process are poorly known
(Arrigo et al., 2017)
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Enhancement of meltwater runott via glacier ablation
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Elevated yield of suspended sediment in glacierised basins
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Deep water upwelling is
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* There is lack of clear signal of iron release from glacier derived meltwater and sediments, as
concentration of dissolved iron (left image) and sediment-bound (right image) are low at the
glacier front

(Hopwood et al., 2010)
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Nutrients upwelling — tidewater glacier impact
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Sediment-bound nutrients from land-based
glaclers Fe

Cu
Mn

nutrients

Element
1]
=

* Nutrients are transported in sediment-bound form

* High rate of physical erosion under glacier may Ca
faciliate transport of geochemically active suspended
sediment

0.1 1 10 100 1000 10000
Particulate/Dissolved Flux
(Jeandel et al., 2015)
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* High suspended sediment load and sediment-bound iron content during the ablation season
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Sediment-bound glacier-derived iron
8 .
B CN Fe [t km 2 year™]
B Sediment-bound Fe [t km™ year™]
6 i
4 I
2 i
O = .
Ice Sheet (G) Other (A)
* Iron yield in sediment-bound form appears to be two orders of

magnitude higher than dissolved and colloidal iron yields (Hodson etal., 2017)
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Sediment-bound nutrients hypothesis

|| Glacial metwater suspended sediments
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* Sediment-bound iron appears to be in highly bioavailable form (Fe*") potentially affecting an

increase in ocean primary production

(Hawkings et al., 2014, 2018)
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| - P o Marine CO, system variability in a high arctic tidewater-glacier fjord )
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Effect of glacial drainage water on the CO, system and ocean
acidification state in an Arctic tidewater-glacier fjord during
two contrasting years
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HYDROLOGICAL PROCESSES

Hvdrol. Process. 30, 1219-1229 (2016)

Published online 21 November 2015 in Wiley Online Library
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Glacial and periglacial floodplain sediments regulate hydrologic
transfer of reactive iron to a high arctic fjord

Andrew Hodson,"z* Aga Nowak' and Hanne Christiansen®

! Depariment of Geography, University of Sheffield, 510 2TN, UK
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| Maps/coordinates are unsuited for navigation Terms of Use © Norwegian Polar Institute
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Negative feedback effect

enhances CO, consumption . .
_— . ¢S 2 CONS P Glacier ablation

F i o 8 > and recession
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(Arrigo et al.., 2017)

Higher CO,
consumption Release of nutrients
to the ocean

Photo credits to D. Ignatiuk (upper), A. Kies (lower)
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What 1s global contribution of glaciers to CO, consumption?

* Relatively small contribution
to CO, consumed from

l,’ - ‘\’ Antarctic %.CO, ,'202 Antarctic iceberg Weatheﬂng glObaHY (3 OO Tg)

. meltwater Fe - “, Fe fertilisation . -

S s feriation 2 T o1-29 Ciais et al., 2013), but further
: research are required.

-'!'v

POC in overridden \ Iceberg
sediments M oltwater \ POC+DOC = 5.2
POC transport = ? —

* Upscalling using remote

sensing?

* Glaciers?

reservoir
* Upwelling in front of
tidewater glaciers?

POC+DOC 1.1

-
- =~

Emissions
CH, =<0.5

nnnnnnnp= Carbon drawdown (Tg C yr™')

— | xes (Tg C yr)

-——

/\1 Stores (Pg C)

* Dust from glacier-free parts
of basins?

(Wadham et al., 2019)
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Carbon cycle in catchment with receding glacier — solvig puzzles

Deep maring-terminating

Enhanced productivity

Optimal upwelling zone

Land-terminating

https://pl.pinterest.com/pin/518406607103509152/ (Hopwood et al., 2018)
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Carbon cycle in catchment with receding glacier — solvig puzzles

Early stage: glacionival control
(Werenskioldbreen)

Enhacement of CO, consumption via
biological pump associated with release
of bio-available micronutrients (e.g. Fe)

Deep marine-terminating

o~y ~
~ e
ES N
~m i o
~ ol ~ A

b Enhanced productivity @ e E e
% 8 SlSE T
I —— i ~
_? « High suspended sediment concentration
2 « Rapid carbonate dissolution and sulphide oxidation
g « Strong connection between sediment weathering and meltwater chemistry
E Final stage: nival control
8 / (Obruchev Glacier)
Inhibition of CO, consumption due
to minor carbonation of silicates and
permafrost-derived CO, emission
2 E T \
d Limited productivity L g L e
~> Q3 EEEEa
2 5 * Low suspended sediment concentration
Ni ff
any-deRclont turds % » Silicate weathering driven by hydrolysis and sulphide oxidation
5 * Weak connection between sediment weathering and meltwater chemistry

https://pl.pinterest.com/pin/518406607103509152/ (Hopwood et al., 2018) (Stachnik et al., in review)



Received: 10 July 2018 I Acrepted: 19 February 2019

DOt 10,1002 hyp 13426

RESEARCH ARTICLE

WILEY

W Tukasz_Arctic

Aluminium in glacial meltwater demonstrates an association
with nutrient export (Werenskiéldbreen, Svalbard)

tukasz Stachnikl23
Elzbieta tepkowska’

! institute of Geography and Regional
Development, University of Wrockaw,
Wroctaw, Paland

I Department of Environmiental Sciences,
Western Moraay University of Applisd
Sciences, Sogndal, Moraay

Yinstitute of Geography and Spatial
Management, Jagiellonian University, Krakow,
Poland

*Institute of Geophysics, Polish Academy of
Sciences, Warszawa, Poland

*farScience Foundation, Prosimisrowa, Poland
*Faculty of Agriculture and Biolagy, Warsaw
University of Life Sciences - SGGW,
Warszawa, Poland

"Faculty of Earth Sciences, University of Silesia
[Centre for Polar Studies KNOWY {Leading
National Research Centre), Sosnowier, Poland
" Department of Analytical Chemistry, The
Chemical Faculty, Gdartsk University of
Tedchnaology, Gdafsk, Poland

Correspondence

bubcarsr Stachinik, Department of Envirormmental
Sciences, Western Norway University of
Applied Sciences, Sogndal, Morway.

Email: lukasz stachnik@gmail com

E

Funading information

V-, TheResearch

PY ) . Ministerstwo Mauki | Szkolnictwa Wyrszego,
A Council Grant/ Award Mumber: 3841/E-£1/5/2018;
of NOTW&)’ Marodowe Certrum Mauki, Grant/ Award

Number- N M306 179737 and N N30&
792041, Svalbard Science Forem, Arctic Field,
Granty Award Mumber: 2012: 1885

| Jacob C. Yde?
| Katarzyna Kozak®

| Adam Nawrot*30 | tukasz Uzarowicz®" |

The aluminium [Al] cyche in glaclerised basins has not recetved a great deal of attentlon in studies
of blogeochemical cycles. As Al may be toxic for biota, it s important to investigate the processes
leading to Its release into the emdronment. it has not yet been ascertained whether filberable Al
[passing through a pore size of 0.45 ) ks incorporated into biogeschemical cycles in glaclerised
basins. Our study aims to determine the relationship between the processes bringing filterable
Al and glacier-derived filterable nutrients (particulardy Fe and 50 into glaclerised basins. We
Investigated the Werenskitidbreen basin (44.1 km?, 60% glacierised) situated in SW Spitsbergen,
Svalbard. In 2011, we collected meltwater from a subglacial portal at the glacler front and
at a downstream hydrometric station throughout the ablation season. The Al concentration,
unchanged between the subglacial system and proglacial zone, reveals that aluminosilicate
weathering is a dominant source of filterable Al under subglacial conditions. By examining the
AlFe ratlo compared with pH and the sulphate mass fraction index, we found that the proton
source for subglacial aluminosilicate weathering is mainly assoclated with sulphide axidation and,
to a lesser degree, with hydrolysis and carbonation. In subglacial outflows and in the glacial rver,
Al and Fe are primarily in the forms of AI{OH], and FedOH]y- The annual filterable Al yield (2.7
mmol m) was of a magnitude similar to that of nutrients such as filerable Fe [3.0 mmol m-) and
lower than that of dissobved 51 {18.5 mmaol rr?). Our results show that filterable Al concentrations
In meltwater ane significantly correlated to filterable and dissolved glacker-derived nutrients
[Fe and 5l, respectively) concentrations in glaciers worldwide. We conclude that a potential
biozvallable Al pool derived from glackerised basing may be incomporated in blogeochemical
cycles, as it s strongly related to the concentrations and ylelds of glacler-derived mutrients.
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