The SIOS Data Management Service (SDMS) integrates information from SIOS partner data repositories into a unified virtual data centre, the SIOS Data Access Portal, allowing users to search for and access data regardless of where they are archived. Providers and users have to commit to the SIOS data policy.
The current focus is on dataset discovery through standardised metadata, and retrieval, visualisation & transformation of data. Ultimately, the Data Management Service works towards integration of datasets which requires a high level of interoperability at the data level.
SDMS currently harvests information on SIOS relevant datasets from a number of data centres (see below), some hosted by SIOS partners and some not. Data centres hosted by SIOS partners work to harmonise access to the data allowing integrated visualisation etc for the relevant datasets.
Data centres SDMS is harvesting information from.
SIOS partner data centres
Other
AWI (DE)
British Antarctic Survey
CNR (IT) - temporarily disabled due to server issues
National Snow and Ice Data Center
IGPAS (PL)
IMR (NO)
IOPAN (PL)
MET (NO) - weather stations have not been updated for a while, update in progress
NERSC (NO)
NILU (NO)
NIPR (JP)
NPI (NO)
UiS (PL)
Citation of data and service
If you use data retrieved through this portal, please acknowledge our funding source: Research Council of Norway, project number 291644, Svalbard Integrated Arctic Earth Observing System – Knowledge Centre, operational phase.
Always remember to cite data when used!
Citation information for individual datasets is often provided in the metadata. However, not all datasets have this information embedded in the discovery metadata. On a general basis a citation of a dataset include the same components as any other citation:
author,
title,
year of publication,
publisher (for data this is often the archive where it is housed),
edition or version,
access information (a URL or persistent identifier, e.g. DOI if provided)
SIOS recommends all partner data repositories to mint Digital Object Identifiers (DOI) on all datasets. The information required to properly cite a dataset is normally provided in the discovery metadata the datasets.
SIOS Core Data
In order to find SIOS Core Data please use the searchable item marked "Collection" on the right hand side of the map and select "SIOSCD". Quick access to SIOS Core Data is provided here.
Nansen Legacy Data
The Nansen Legacy project is using the SIOS Data Management system as the data portal. Quick access to all Nansen Legacy related datasets is available here.
Brief user guide
Outline of the data portal search interface.
The Data Access Portal has information in 3 columns. An outline of the content in these columns is provided above. When first entering the search interface, all potential datasets are listed. Datasets are indicated in the map and results tabulation elements which are located in the middle column. The order of results can be modified using the "Sort by" option in the left column. On top of this column is normally relevant guidance information to user presented as collapsible elements.
If the user want to refine the search, this can be done by constraining the bounding box search. This is done in the map - the listing of datasets is automatically updated. Date constraints can be added in the left column. For these to take effect, the user has to push the button marked search. In the left column it is also possible to specific text elements to search for in the datasets. Again pushing the button marked "Search" is necessary for these to take action. Complex search patterns can be constructed using logical operators from the drop down above the text field and prefixing words with '+' to require their presence and '-' to require their non presence.
Other elements indicated in the left and right columns are facet searches, i.e. these are keywords that are found in the datasets and all datasets that contain these specific keywords in the appropriate metadata elements are listed together. Further refinement can be done using full text, date or bounding box constraints. Individuals, organisations and data centres involved in generating or curating the datasets are listed in the facets in the right column.
Institutions: The University Centre in Svalbard, The University Centre in Svalbard, Norwegian Meteorological Institute, Norwegian Meteorological Institute / Arctic Data Centre (NO/MET/ADC)
The Isfjorden Weather Information Network provides standard meteorological near-surface measurements from the Isfjorden region in Svalbard. The network includes weather stations permanently installed on lighthouses around the fjord and onboard small tourist cruise ships trafficking the fjord from the spring to the autumn. Data is available since August 2021 and new observations become available here in near real-time.
Institutions: The University Centre in Svalbard, The University Centre in Svalbard, University of Bergen, University of Bergen, The University Centre in Svalbard, Norwegian Meteorological Institute / Arctic Data Centre
A scanning Doppler Lidar was placed in Adventdalen (Central Spitsbergen, Svalbard, Norway) close to the permanent weather mast SN99870. The Lidar measured between 4 July and 23 August 2022 with different scanning patterns in an hourly cycle. The cycle consisted of three Plan Position Indicator (PPI) scans at 1, 5 and 10 degree from xx:00 to xx:10, Range Height Indicator (RHI) scans alternating between up-valley and down-valley direction from xx:10 to xx:50, Doppler-Beam-Swinging (DBS) technique from xx:50 to xy:00. The radial resolution was 10 m with overlapping range gates of 50 m. Short periods of power cuts were encountered. Frequently there were conditions with little backscatter and low carrier-to-noise ratio, especially in light down-valley winds.
This dataset includes observations of benthic organisms from Isfjorden, Billefjorden, Kongsfjorden, Magdalenafjorden and the marginal ice zone (MIZ). The organisms were collected using benthic trawls. The trawls were done in April 2023, during a field trip on F/F Helmer Hanssen for students in the AB202 course at UNIS. The benthos were described to the lowest possible taxonomic level by the students.
This data was collected during a AB-202 Helmer Hanssen field cruise in the spring of 2023. The cruise lasted from 26.04-01.05. The stations were Kongsfjorden (KB3), Magdalenafjorden (MAG), marginal ice zone (MIZ) and Billefjorden (BAB). The data was collected with a benthic trawl at each of the stations.
Phytoplankton data collected on a scientific cruise in the biology course AB-202 by The University Centre in Svalbard. The data is collected from different fjords on the west coast of Spitsbergen and by the marginal ice zone in the period 26.04.2023-01.05.2023.
The data was collected from different fjords around Spitsbergen with the use of macrozooplankton nets (1000 μm). The sampling locations are Isfjorden (IsK), Kongsfjorden (KB3) and Magdalenefjorden (MF), and the sampling was done at almost maximum depth.
Polyploidy is a very important evolutionary mechanism. However, the advantages and disadvantages of polyploidy are far from being resolved. Saxifraga oppositifolia L. is a circumpolar arctic-alpine species, and one of these species where the effect of autopolyploidy has been overlooked. Three ploidy levels of autopolyploid origin are recorded (diploid, triploid and tetraploid). Saxifraga oppositifolia show considerable variation in both ecology and morphology; it thrives in a wide range of habitats, from early snow free, extremely dry ridges with long growing season, to moist snow beds with short growing season.
We establishment four transects through habitat gradients summer 2018, and added one extra transect summer 2019 in order to study the distribution of ploidy levels of Saxifraga oppositifolia different habitats. Plots were established in three main habitat types (Habitat 1: glacial or fluvial deposits in the valley bottom, Habitat 2: north-east facing slopes in mesic to dry heath vegetation. Habitat 3: dry, open ridges) following and altitudinal gradient from the valley bottom of the main Advent Valley and up the mountain following slopes facing North East in the entrance of Bjørndalen, Endalen, Todalen, Bolterdalen and Foxdalen. In total 15 habitat plots (20 m x 40 m) were established, and we randomly marked out and georeferenced 48 plants within each plot. Within each plot, we placed out data loggers, which measure temperature and for some plots also moisture. A range of different measurmnets, including vegetation analyses, genetic analyses, ploidy analyses and edaphic analyses have been performed, and additional data is still being collected (2021).
We aim to understand the origins of triploids and tetraploids, and identify genetic differences, and physiological and morphological traits related to ploidy levels, and relate these to niche differentiation and ecology.
Polyploidy is a very important evolutionary mechanism. However, the advantages and disadvantages of polyploidy are far from being resolved. Saxifraga oppositifolia L. is a circumpolar arctic-alpine species, and one of these species where the effect of autopolyploidy has been overlooked. Three ploidy levels of autopolyploid origin are recorded (diploid, triploid and tetraploid). Saxifraga oppositifolia show considerable variation in both ecology and morphology; it thrives in a wide range of habitats, from early snow free, extremely dry ridges with long growing season, to moist snow beds with short growing season.
We establishment four transects through habitat gradients summer 2018, and added one extra transect summer 2019 in order to study the distribution of ploidy levels of Saxifraga oppositifolia different habitats. Plots were established in three main habitat types (Habitat 1: glacial or fluvial deposits in the valley bottom, Habitat 2: north-east facing slopes in mesic to dry heath vegetation. Habitat 3: dry, open ridges) following and altitudinal gradient from the valley bottom of the main Advent Valley and up the mountain following slopes facing North East in the entrance of Bjørndalen, Endalen, Todalen, Bolterdalen and Foxdalen. In total 15 habitat plots (20 m x 40 m) were established, and we randomly marked out and georeferenced 48 plants within each plot. Within each plot, we placed out data loggers, which measure temperature and for some plots also moisture. A range of different measurmnets, including vegetation analyses, genetic analyses, ploidy analyses and edaphic analyses have been performed, and additional data is still being collected (2021).
We aim to understand the origins of triploids and tetraploids, and identify genetic differences, and physiological and morphological traits related to ploidy levels, and relate these to niche differentiation and ecology.
Polyploidy is a very important evolutionary mechanism. However, the advantages and disadvantages of polyploidy are far from being resolved. Saxifraga oppositifolia L. is a circumpolar arctic-alpine species, and one of these species where the effect of autopolyploidy has been overlooked. Three ploidy levels of autopolyploid origin are recorded (diploid, triploid and tetraploid). Saxifraga oppositifolia show considerable variation in both ecology and morphology; it thrives in a wide range of habitats, from early snow free, extremely dry ridges with long growing season, to moist snow beds with short growing season.
We establishment four transects through habitat gradients summer 2018, and added one extra transect summer 2019 in order to study the distribution of ploidy levels of Saxifraga oppositifolia different habitats. Plots were established in three main habitat types (Habitat 1: glacial or fluvial deposits in the valley bottom, Habitat 2: north-east facing slopes in mesic to dry heath vegetation. Habitat 3: dry, open ridges) following and altitudinal gradient from the valley bottom of the main Advent Valley and up the mountain following slopes facing North East in the entrance of Bjørndalen, Endalen, Todalen, Bolterdalen and Foxdalen. In total 15 habitat plots (20 m x 40 m) were established, and we randomly marked out and georeferenced 48 plants within each plot. Within each plot, we placed out data loggers, which measure temperature and for some plots also moisture. A range of different measurmnets, including vegetation analyses, genetic analyses, ploidy analyses and edaphic analyses have been performed, and additional data is still being collected (2021).
We aim to understand the origins of triploids and tetraploids, and identify genetic differences, and physiological and morphological traits related to ploidy levels, and relate these to niche differentiation and ecology.
Polyploidy is a very important evolutionary mechanism. However, the advantages and disadvantages of polyploidy are far from being resolved. Saxifraga oppositifolia L. is a circumpolar arctic-alpine species, and one of these species where the effect of autopolyploidy has been overlooked. Three ploidy levels of autopolyploid origin are recorded (diploid, triploid and tetraploid). Saxifraga oppositifolia show considerable variation in both ecology and morphology; it thrives in a wide range of habitats, from early snow free, extremely dry ridges with long growing season, to moist snow beds with short growing season.
We establishment four transects through habitat gradients summer 2018, and added one extra transect summer 2019 in order to study the distribution of ploidy levels of Saxifraga oppositifolia different habitats. Plots were established in three main habitat types (Habitat 1: glacial or fluvial deposits in the valley bottom, Habitat 2: north-east facing slopes in mesic to dry heath vegetation. Habitat 3: dry, open ridges) following and altitudinal gradient from the valley bottom of the main Advent Valley and up the mountain following slopes facing North East in the entrance of Bjørndalen, Endalen, Todalen, Bolterdalen and Foxdalen. In total 15 habitat plots (20 m x 40 m) were established, and we randomly marked out and georeferenced 48 plants within each plot. Within each plot, we placed out data loggers, which measure temperature and for some plots also moisture. A range of different measurmnets, including vegetation analyses, genetic analyses, ploidy analyses and edaphic analyses have been performed, and additional data is still being collected (2021).
We aim to understand the origins of triploids and tetraploids, and identify genetic differences, and physiological and morphological traits related to ploidy levels, and relate these to niche differentiation and ecology.
Polyploidy is a very important evolutionary mechanism. However, the advantages and disadvantages of polyploidy are far from being resolved. Saxifraga oppositifolia L. is a circumpolar arctic-alpine species, and one of these species where the effect of autopolyploidy has been overlooked. Three ploidy levels of autopolyploid origin are recorded (diploid, triploid and tetraploid). Saxifraga oppositifolia show considerable variation in both ecology and morphology; it thrives in a wide range of habitats, from early snow free, extremely dry ridges with long growing season, to moist snow beds with short growing season.
We establishment four transects through habitat gradients summer 2018, and added one extra transect summer 2019 in order to study the distribution of ploidy levels of Saxifraga oppositifolia different habitats. Plots were established in three main habitat types (Habitat 1: glacial or fluvial deposits in the valley bottom, Habitat 2: north-east facing slopes in mesic to dry heath vegetation. Habitat 3: dry, open ridges) following and altitudinal gradient from the valley bottom of the main Advent Valley and up the mountain following slopes facing North East in the entrance of Bjørndalen, Endalen, Todalen, Bolterdalen and Foxdalen. In total 15 habitat plots (20 m x 40 m) were established, and we randomly marked out and georeferenced 48 plants within each plot. Within each plot, we placed out data loggers, which measure temperature and for some plots also moisture. A range of different measurmnets, including vegetation analyses, genetic analyses, ploidy analyses and edaphic analyses have been performed, and additional data is still being collected (2021).
We aim to understand the origins of triploids and tetraploids, and identify genetic differences, and physiological and morphological traits related to ploidy levels, and relate these to niche differentiation and ecology.
Polyploidy is a very important evolutionary mechanism. However, the advantages and disadvantages of polyploidy are far from being resolved. Saxifraga oppositifolia L. is a circumpolar arctic-alpine species, and one of these species where the effect of autopolyploidy has been overlooked. Three ploidy levels of autopolyploid origin are recorded (diploid, triploid and tetraploid). Saxifraga oppositifolia show considerable variation in both ecology and morphology; it thrives in a wide range of habitats, from early snow free, extremely dry ridges with long growing season, to moist snow beds with short growing season.
We establishment four transects through habitat gradients summer 2018, and added one extra transect summer 2019 in order to study the distribution of ploidy levels of Saxifraga oppositifolia different habitats. Plots were established in three main habitat types (Habitat 1: glacial or fluvial deposits in the valley bottom, Habitat 2: north-east facing slopes in mesic to dry heath vegetation. Habitat 3: dry, open ridges) following and altitudinal gradient from the valley bottom of the main Advent Valley and up the mountain following slopes facing North East in the entrance of Bjørndalen, Endalen, Todalen, Bolterdalen and Foxdalen. In total 15 habitat plots (20 m x 40 m) were established, and we randomly marked out and georeferenced 48 plants within each plot. Within each plot, we placed out data loggers, which measure temperature and for some plots also moisture. A range of different measurmnets, including vegetation analyses, genetic analyses, ploidy analyses and edaphic analyses have been performed, and additional data is still being collected (2021).
We aim to understand the origins of triploids and tetraploids, and identify genetic differences, and physiological and morphological traits related to ploidy levels, and relate these to niche differentiation and ecology.
Polyploidy is a very important evolutionary mechanism. However, the advantages and disadvantages of polyploidy are far from being resolved. Saxifraga oppositifolia L. is a circumpolar arctic-alpine species, and one of these species where the effect of autopolyploidy has been overlooked. Three ploidy levels of autopolyploid origin are recorded (diploid, triploid and tetraploid). Saxifraga oppositifolia show considerable variation in both ecology and morphology; it thrives in a wide range of habitats, from early snow free, extremely dry ridges with long growing season, to moist snow beds with short growing season.
We establishment four transects through habitat gradients summer 2018, and added one extra transect summer 2019 in order to study the distribution of ploidy levels of Saxifraga oppositifolia different habitats. Plots were established in three main habitat types (Habitat 1: glacial or fluvial deposits in the valley bottom, Habitat 2: north-east facing slopes in mesic to dry heath vegetation. Habitat 3: dry, open ridges) following and altitudinal gradient from the valley bottom of the main Advent Valley and up the mountain following slopes facing North East in the entrance of Bjørndalen, Endalen, Todalen, Bolterdalen and Foxdalen. In total 15 habitat plots (20 m x 40 m) were established, and we randomly marked out and georeferenced 48 plants within each plot. Within each plot, we placed out data loggers, which measure temperature and for some plots also moisture. A range of different measurmnets, including vegetation analyses, genetic analyses, ploidy analyses and edaphic analyses have been performed, and additional data is still being collected (2021).
We aim to understand the origins of triploids and tetraploids, and identify genetic differences, and physiological and morphological traits related to ploidy levels, and relate these to niche differentiation and ecology.
Polyploidy is a very important evolutionary mechanism. However, the advantages and disadvantages of polyploidy are far from being resolved. Saxifraga oppositifolia L. is a circumpolar arctic-alpine species, and one of these species where the effect of autopolyploidy has been overlooked. Three ploidy levels of autopolyploid origin are recorded (diploid, triploid and tetraploid). Saxifraga oppositifolia show considerable variation in both ecology and morphology; it thrives in a wide range of habitats, from early snow free, extremely dry ridges with long growing season, to moist snow beds with short growing season.
We establishment four transects through habitat gradients summer 2018, and added one extra transect summer 2019 in order to study the distribution of ploidy levels of Saxifraga oppositifolia different habitats. Plots were established in three main habitat types (Habitat 1: glacial or fluvial deposits in the valley bottom, Habitat 2: north-east facing slopes in mesic to dry heath vegetation. Habitat 3: dry, open ridges) following and altitudinal gradient from the valley bottom of the main Advent Valley and up the mountain following slopes facing North East in the entrance of Bjørndalen, Endalen, Todalen, Bolterdalen and Foxdalen. In total 15 habitat plots (20 m x 40 m) were established, and we randomly marked out and georeferenced 48 plants within each plot. Within each plot, we placed out data loggers, which measure temperature and for some plots also moisture. A range of different measurmnets, including vegetation analyses, genetic analyses, ploidy analyses and edaphic analyses have been performed, and additional data is still being collected (2021).
We aim to understand the origins of triploids and tetraploids, and identify genetic differences, and physiological and morphological traits related to ploidy levels, and relate these to niche differentiation and ecology.
Polyploidy is a very important evolutionary mechanism. However, the advantages and disadvantages of polyploidy are far from being resolved. Saxifraga oppositifolia L. is a circumpolar arctic-alpine species, and one of these species where the effect of autopolyploidy has been overlooked. Three ploidy levels of autopolyploid origin are recorded (diploid, triploid and tetraploid). Saxifraga oppositifolia show considerable variation in both ecology and morphology; it thrives in a wide range of habitats, from early snow free, extremely dry ridges with long growing season, to moist snow beds with short growing season.
We establishment four transects through habitat gradients summer 2018, and added one extra transect summer 2019 in order to study the distribution of ploidy levels of Saxifraga oppositifolia different habitats. Plots were established in three main habitat types (Habitat 1: glacial or fluvial deposits in the valley bottom, Habitat 2: north-east facing slopes in mesic to dry heath vegetation. Habitat 3: dry, open ridges) following and altitudinal gradient from the valley bottom of the main Advent Valley and up the mountain following slopes facing North East in the entrance of Bjørndalen, Endalen, Todalen, Bolterdalen and Foxdalen. In total 15 habitat plots (20 m x 40 m) were established, and we randomly marked out and georeferenced 48 plants within each plot. Within each plot, we placed out data loggers, which measure temperature and for some plots also moisture. A range of different measurmnets, including vegetation analyses, genetic analyses, ploidy analyses and edaphic analyses have been performed, and additional data is still being collected (2021).
We aim to understand the origins of triploids and tetraploids, and identify genetic differences, and physiological and morphological traits related to ploidy levels, and relate these to niche differentiation and ecology.